Introducing peerflixsrc

Some of you might have been following all the brouhaha over Popcorn Time. I won’t get into the arguments that can be made for and against at the moment.

While poking around at what it was that Popcorn Time was doing, I stumbled upon peerflix, a Node.js-based application that takes a .torrent file that points to one big video file, and presents that as an HTTP stream. It has its own BitTorrent implementation where it prioritises early chunks of the file so that it is possible to start watching the video before the entire file has been downloaded. It also seeds the file while the video is being watched locally.

Seeing as I was at the GStreamer Hackfest in Munich when this came up in discussions, it seemed topical to have a GStreamer element to wrap this neat bit of functionality. Thus was peerflixsrc born. This is a simple source element that takes a URI to a torrent file (something like torrent+http://archive.org/some/video.torrent), fires up peerflix in the background, and provides the data from the corresponding HTTP stream. Conveniently enough, this can be launched using playbin or Totem (hinting at the possibilities of what can come next!). Here’s what it looks like…

Screenshot of Totem playing a torrent file directly using peerflixsrc
Screenshot of Totem playing a torrent file directly using peerflixsrc

The code is available now. To use it, build this copy of gst-plugins-bad using your favourite way, make sure you have peerflix installed (sudo npm install -g peerflix), and you’re good to go.

This is not quite mature enough to go into upstream GStreamer. The ugliest part is firing up a Node.js server to make this work, not the least because managing child processes on Linux is not the prettiest code you can write. Maybe someone wants to look at rewriting the torrent bits from peerflix in C? There don’t seem to be any decent C-based libraries for this out there, though.

In the mean time, enjoy this, and comments / patches welcome!

GStreamer Hackfest 2014

Last weekend, I was at the GStreamer Hackfest in Munich. As usual, it was a blast — we got much done, and it was a pleasure to meet the fine folks who bring you your favourite multimedia framework again. Thanks to the conference for providing funding to make this possible!

My plan was to work on making Totem’s support for passthrough audio work flawlessly (think allowing your A/V receiver to decode AC3/DTS if it allows it, with more complex things coming the future as we support it). We’ve had the pieces in place in GStreamer for a while now, and not having that just work with Totem has been a bit of a bummer for me.

The immediate blocker so far has been that Totem needs to add a filter (scaletempo) before the audio sink, which forces negotiation to always pick a software decoder. We solved this by adding the ability for applications to specify audio/video filters for playbin to plug in if it can. There’s a now-closed bug about it, for the curious. Hopefully, I’ll get the rest of the work to make Totem use this done soon, so things just work.

Now the reason that didn’t happen at the hackfest is that I got a bit … distracted … at the hackfest by another problem. More details in an upcoming post!

Picking your battles

Most of you have no doubt already seen that Mozilla will be changing their position on H.264 support for HTML5 video in future releases. This is an extremely important decision that I’ve been hoping to see for a while now, and I am really glad this is being done.

There is no doubt that we need patent-unencumbered standards for web codecs (or as much as is possible given the dismal patent ecology today), and while much giddy anticipation followed Google/On2’s release of VP8 into the open, I don’t believe it ever made sense to expect the codec landscape to change drastically in the short timespan everyone expected. There’s a lot of the hardware and software out there that needs to change (see any SoCs with VP8 support yet?), not to mention the interests of the MPEG-LA mafconsortium.

I love Firefox, both as a product and what it means for an open web (for those of you that know me, this might be hard to believe given all my ranting, but it’s true!). I’m glad Mozilla chose to live to fight another day rather than go out in a blaze of glory and (or a flicker of irrelevance).

p.s.: these are my views and do not necessarily represent those of my employer

p.p.s.: Alessandro’s been doing some great work to get the GStreamer multimedia backend going again (this makes so much more sense than going the NIH route!)

More PulseAudio power goodness

[tl;dr — if you’re using GNOME or a GStreamer-based player, not using the Rhythmbox crossfading backend, and want to try to save ~0.5 W of power, jump to end of the post]

Lennart pointed to another blog post about actually putting PulseAudio’s power-saving capabilities to use on your system. The latter provides a hack-ish way to increase buffering in PulseAudio to the maximum possible, reducing the number of wakeups. I’m going to talk about that a bit.

Summarising the basic idea, we want music players to decode a large chunk of data and give it to PA so that we can then fill up ALSA’s hardware buffer, sleep till it’s almost completely consumed, fill it again, sleep, repeat. More details in this post from Lennart.

The native GNOME audio/video players don’t talk to PulseAudio directly — they use GStreamer, which has a pulsesink element that actually talks to PulseAudio. We could configure things so that we send a large amount (say 2 seconds’ worth) to PulseAudio, sleep, and then wake up periodically to push out more. Now in the audio player (say Rhythmbox), the user hits next, prev, or pause. We need to effect this change immediately, even though we’ve already sent out 2 seconds of data (it would suck if you hit pause and the actual pause happened 2 seconds later, wouldn’t it?). PulseAudio already solves because it can internally “rewind” the buffer and overwrite it if required. GStreamer can and does take advantage of this by sending pause and other control messages out of band from the data.

This all works well for relatively simple GStreamer pipelines. However, if you want to do something more complicated, like Rhythmbox’ crossfading backend, things start to break. PulseAudio doesn’t offer an API to do fades, and since we don’t do rewinds in GStreamer, we need to apply effects such as fades with a latency equal to the amount of buffering we’re asking PulseAudio to do. This makes for unhappy users.

Well, all is not as bleak as it seems. There was some discussion on the PA mailing list, and the need for a proper fade API (really, a generic effects API) is clear. There have even been attempts to solve this in GStreamer.

But you want to save 0.5 W of power now! Okay, if you’re not using the Rhythmbox crossfading backend (or are okay with disabling it), this will make Rhythmbox, Banshee, pre-3.0 Totem (and really any GNOMEy player that uses gconfaudiosink, which will soon be replaced by gsettingsaudiosink, I guess), you can run this on the command line:

gconftool-2 --type string \
    --set /system/gstreamer/0.10/default/musicaudiosink \
    "pulsesink latency-time=100000 buffer-time=2000000"

On my machine, this brings down the number of wakeups per second because of alsa-sink to ~2.7 (corresponding nicely to the ~350ms of hardware buffer that I have). With Totem 3.0, this may or may not work, depending on whether your distribution gives gconfaudiosink a higher rank than pulseaudiosink.

This is clearly just a stop-gap till we can get things done the Right Way™ at the system level, so really, if things break, you get to keep the pieces. If you need to, you can undo this change by running the same command without the latency-time=… and buffer-time=… bits. That said, if something does break, do leave a comment below so I can add it to the list of things that we need to test the final solution with.