
The Story of PulseAudio
and

Compressed Offload

Arun Raghavan
Ford_Prefect | @louiswu



The A Linux Audio Stack



+---------------+
|  Application  |
+---------------+
        ↓
 +-------------+
 |  GStreamer  |
 +-------------+
        ↓
+---------------+
|   PulseAudio  |
+---------------+
        ↓
   +--------+
   |  ALSA  |
   +--------+



“Modern” audio hardware



+---------+     +---------+     +---------+
|         |---->|         |---->|         |---->
|   CPU   |     |   DSP   |     |  CODEC  |
|         |<----|         |<----|         |<----
+---------+     +---------+     +---------+



Processing

Flexibility

Power savings



Compressed Offload

CPU sends encoded data

Goes to sleep

DSP does decode + render



+---------------+
|  Application  |
+---------------+
        ↓         mp3
 +-------------+
 |  GStreamer  |
 +-------------+
        ↓         pcm
+---------------+
|   PulseAudio  |
+---------------+
        ↓         pcm
   +--------+
   |  ALSA  |
   +--------+



+---------------+
|  Application  |
+---------------+
        ↓         mp3
 +-------------+
 |  GStreamer  |
 +-------------+
        ↓         mp3
+---------------+
|   PulseAudio  |
+---------------+
        ↓         mp3
   +--------+
   |  ALSA  |
   +--------+



Sounds simple enough



Detect and expose formats

Allow apps to negotiate

Stream audio data (frames)

Smug satisfaction of watts saved



Our kryptonite is the past

Everything is PCM (ish)

Bytes ≈ Time

1920 / S16LE / 2ch / 48 kHz ≈ 10 ms

Not true for compressed audio



ALSA compress_offload



Query capabilities

Set parameters

Write data

Get timestamp



PulseAudio: Clients



pa_format_info: Flexible key/value pairs

Sink can expose supported formats

Client can propose a list of formats

Core selects one and tells client



Protocol and stream API are bytes-based

Data is written in arbitrary byte chunks

Latency and timing based on buffer sizes (bytes)



PulseAudio: Sinks



Deals with a stream, not tracks

Renders silence when there is no data

Does mixing, conversion, volumes

Rewinds



Add a bunch of new formats for MP3/AAC/...

Disallow arbitrary buffer position writes

Assume each buffer written is one frame



Modify the protocol for timestamp & duration

Add per-buffer flags in protocol (discont)



Add a API to set the format on a sink

Add API to flush & drain on sinks

Allow sinks to not render data on IDLE

Don't rewind compressed streams



No upstream sink implementation yet

Compress offload sink Should Be Easy™

Not much hardware (DragonBoard?)



GStreamer



pulsesink element

Uses GstAudio base-classes

Works with bytes/samples

Changing this requires radical surgery



pulsedirectsink element

Bypass the problem

No ringbuffer

Just write buffers as they come



Parsers need to be accurate

aacparse often misses HE-AAC extensions

Ditto asfparse for WMA

Vorbis & FLAC have streamheader in caps



Future



Merge all the work

compress_offload sink

Timing and latency

Compressed capture

Gapless playback :-(



References

https://gitlab.freedesktop.org/arun/pulseaudio/commits/compressed

https://gitlab.freedesktop.org/arun/gst-plugins-good/commits/pulsedirectsink

https://www.kernel.org/doc/html/latest/sound/designs/compress-offload.html



Most of the work funded by

Qualcomm

Props to them for helping push this forward



Questions?

♥


