Filesystems in Linux

A brief overview and comparison of today's competing FSes.

Please save the yelling of obscenities for Q&A. ;-)

Files and Directories

- Files and directories allow data to be
 - Grouped files
 - Ordered hierarchically directories
- Filesystems
 - Perform 2 functions, broadly speaking
 - Manage storage
 - Allow user to access data in a certain way
 - Evolution
 - Storage techniques have improved over the years
 - Database methodologies have seeped in
 - Users still have a 20-year old view
 - Files are, at best, random-access byte-streams

Filesystems Today

- Good ol' Ext2
- Ext3 is Ext2 with journaling added
- Reiser3 is making major inroads
- Reiser4 will be out eventually
- JFS from IBM
- XFS from SGI
- NTFS from...dial M for Microsoft
- All but Ext2/3 use B-Trees or variants
 - More complex
 - Faster
- All now provide ACLs

Journaling

- From databases
- Keep a log of "transactions"
 - All operations are atomic
 - Logging all data is expensive
 - Log metadata
- Crash? No problem
 - Replay log
 - FS is consistent
- Filesystem corruption is far less likely
- Startup time after a crash is much lower

Other stuff

- So how do I get this stuff working
 - Gentoo comes with Ext2/3, Reiser3, XFS and JFS support (shameless plug)
 - Slackware comes with Ext2/3, Reiser3 support
 - RedHat / Fedora Core— You're stuck with Ext3
 - Mandrake At last count had Ext2/3, Reiser3, and JFS. Anybody know more?

Ext2

- Written by Theodore T'so
- Default for most distros
- Simple no complex algorithms
- Rock-solid
- But not journaled
 - Fsck takes ages
- Reference implementation of an FS in Linux
- Use Ext3 over Ext2

Ext3

- Ext3 = Ext2 + Journaling
 - Nothing new / fancy
- Used to journal data and metadata
 - Expensive
 - Now journals metadata alone
- Migrating between Ext2 and Ext3 is a breeze
 - tune2fs -j /dev/hdaX to make hdaX journaled
 - Just mount as ext2 and the journal is ignored

More Ext3

- Use tune2fs -J to tune your journal
 - Set size, put journal on another device
- Advantages
 - Simple
 - Extremely robust
- Disadvantages
 - Simple
 - Not the first choice for high-performance machines
- Use it if robustness precedes performance

Reiser3

- Developed by Hans Reiser of Namesys
- Written from scratch
- Emerging champion, used by
 - Gentoo
 - Suse
 - Lindows
- Enhanced B+trees + assorted algorithms
- Tail packing

Tail Packing

- Files stored in blocks, usually 4Kb
 - 1Kb file takes 1 block
 - 41Kb file takes 11 blocks
 - The remaining 3Kb is wasted
 - These are called tails
- Reiser3 takes tails and packs them into a single block
 - Saves space
 - Repacking overhead when appending data
- Typical savings of about 5% (YMWillV)
- Don't want it? Mount with notail

The Reiser3 Verdict

- Advantages
 - Very fast
 - Relatively stable
 - Tail packing for the really stingy;)
- Disadvantages
 - Tail repacking can be expensive
 - Not as solid as Ext3, supposedly
 - I have no complaints
- Use this at home, but not on your servers

JFS

- Developed by IBM for AIX
- Meant for high-end machines
 - High performance
 - Reliability
- Different block sizes supported
 - 512, 1024, 2048, 4096
- Directories stored in 2 ways
 - Small directories in the block
 - Large directories B+ trees
- Extents for large files

More JFS

- Dynamic inode allocation
 - Won't run out of inodes, or need to preallocate
- Online resizing
 - You can resize the partition
 - Good for Logical Volume Management
- Sparse files
 - Does any application support these?
- 64-bit ready

Still More JFS

- Advantages
 - Reliable
 - Good for large files
 - Only one to support online resizing
- Disadvantages
 - More tuned for large files and servers
 - Not too good for home use

XFS

- Made by SGI for Irix
- Industrial-strength FS
 - High-performance
 - Scalable good for huge filesystems
- Extent-based good for large files
- Extensive use of B+trees for speed
- Also a 64-bit FS
- Caches heavily
 - Minimize disk I/O
 - Great speed boost

Use XFS?

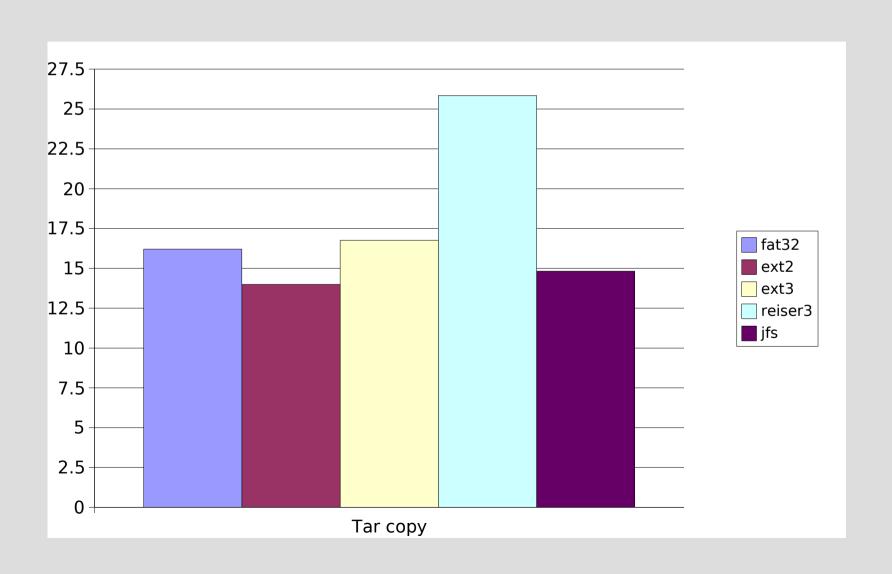
- Advantages
 - Good for very large files and filesystems
 - Fast
- Disadvantages
 - Not quite as reliable as Ext3
 - Gentoo says it's flaky
 - Didn't work off my 2.6.5 kernel
 - No numbers in the benchmarks
- Use it if you've got a big server
 - With large files
 - Needing good throughput

Reiser4

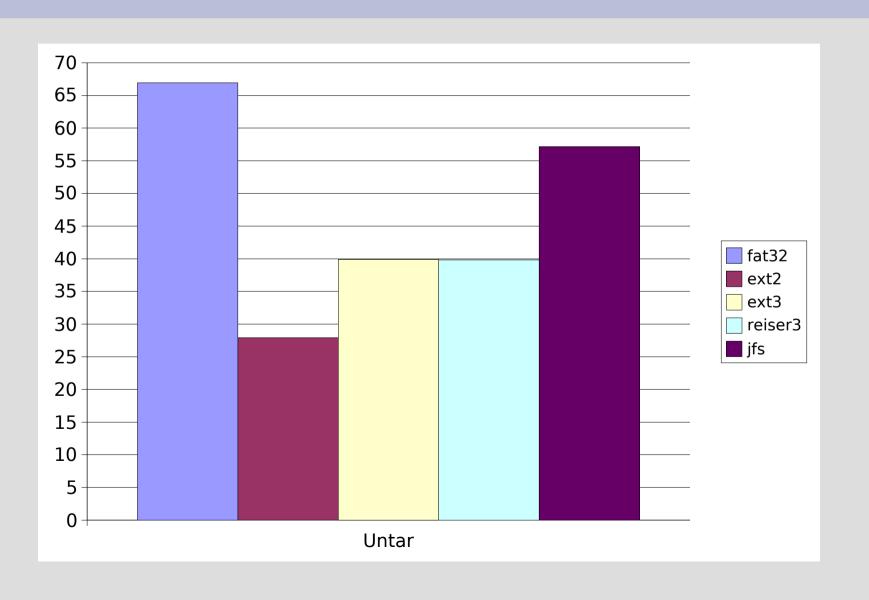
- Gleeful cackle
- Currently in beta
- Should get into the 2.6 kernel soon
- Many new ideas, concepts
- Fast!!!
- But first...

Digressing...

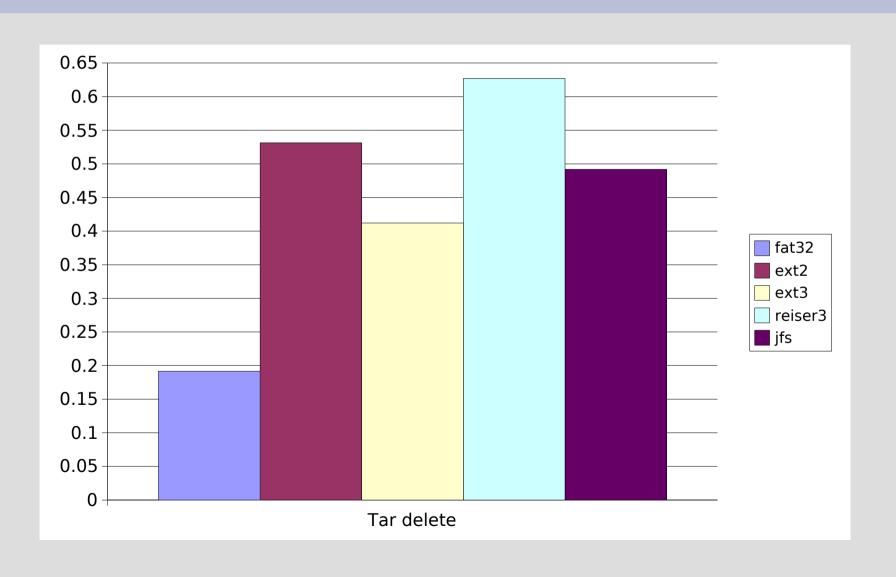
- File system view for the user hasn't changed in 20 years
 - Very low level
 - Just a stream of bytes
 - Metadata is minimal
- Restrictions
 - Small files are expensive
 - Workarounds mean compromises
 - /etc/passwd
 - Files cannot have data added into the middle

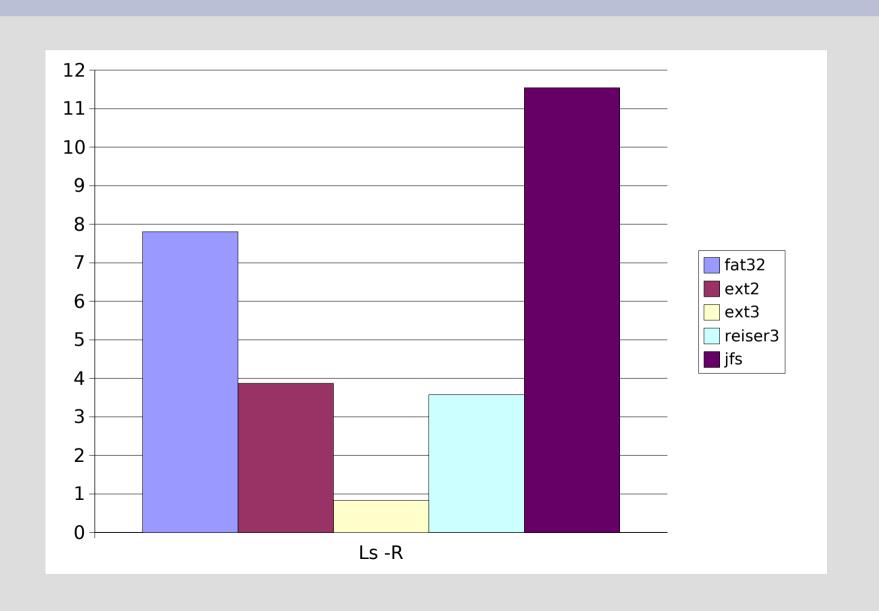

...Back to Reiser4

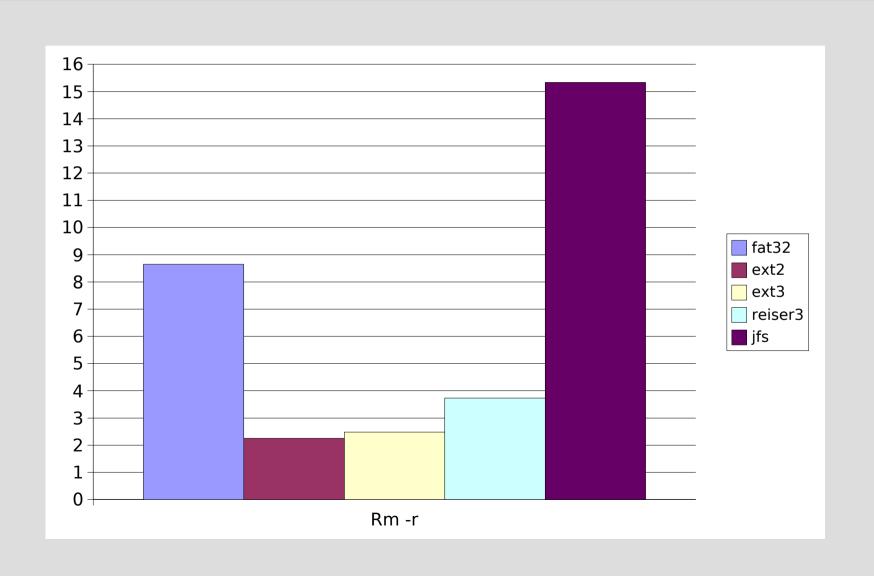
- Layering
 - Storage layer
 - Optimized for speed
 - Similar to the old implementation
 - Semantic layer
 - Offers a new range of options
 - Richer ways to access the data
- Plugins
 - Allow all sorts of extensions to the FS, particularly at the semantic layer
 - Example cd into files for psedo-files
- WinFS intends to do similar things, in due time


Getting Down 'n Dirty

- Disclaimer
 - Take with a spoon of salt
 - Not very "real-world"
- The benchmark
 - Copy a tar file (Linux kernel tree, ~245MB)
 - Decompress tar
 - Delete tar
 - Recursive listing of kernel tree
 - Delete tree
- Fat32 numbers only for reference
 - No M\$ bashing intended.;)
 - No NTFS


Tar Copy


Untar


Delete Tar

Recursive Listing

Recursive Deletion

The Verdict

- Don't use Fat32
- If you want to use Ext2, use Ext3
- Reiser can be faster under load
- JFS and XFS
 - Supposed to be industry-grade
 - Not performing all that well
 - More research before commitment