
The Impact of Current Storage Techniques on File
System Design

Ibrahim A.
Dept. of CSE,

IIT Kanpur
ibrahim@cse.iitk.ac.in

Arun Raghavan
Dept. of CSE,

IIT Kanpur
arunsr@cse.iitk.ac.in

Kamal Sharma
Dept. of CSE,

IIT Kanpur
kamals@cse.iitk.ac.in

Abstract— Storage techniques have seen a number of in-
cremental changes over the last two decades, starting from
single, direct-access disks to intelligent, multiple-disk, object-
based storage devices which provide far richer semantics than
seen previously. This paper tries to track and understand the
corresponding changes seen in file system design, and provide
some insights into what the future might hold in this area.

I. INTRODUCTION

The storage landscape has seen a slow but definite change
over the last two decades. Slow and bulky disks gave way
to smaller, faster disks, which have now started to reach to
the technical limits of mechanical storage. In the mean time
several techniques have been formulated to improve the speed
and reliability of these devices (buffering and RAID [20], for
example). In the mean time, requirements have driven the basic
architecture of storage systems from centrally-located single-
user storage, to centrally located multi-user storage, to tightly-,
and even loosely-coupled, distributed storage.

In this paper we analyse the various file system technologies
that have evolved to address the special requirements of each
of these storage technologies. Some fundamental requirements
of a storage system that we look at in each scenario are listed
below:

1) Caching/Buffering: Conventional direct-attached storage
is orders of magnitude slower than higher memory
hierarchies, and the storage technology is reaching the
limits of mechanical technology. Fast, dedicated solid-
state memory, as well as primary memory, aer used as
caches to hide the speed of the underlying technology.
If the system relies on general-purpose networks, which
usually have high latency, delays are even more pro-
nounced, and caching becomes even more important.

2) Locking: In order to protect concurrent access to files,
locking mechanisms are often provided by file systems.
The problem, while not too complex on centralized
systems, becomes far for difficult in a distributed en-
vironment.

3) Access Control: In a multi-user environment, it is impor-
tant to provide mechanisms to choose which users who
can access different data. In traditional Unix systems,
for example, access-control is provided in the form of
file/directory permissions.

4) Security: Some storage systems now traverse untrusted
networks, or contain highly sensitive data. In such cases,
the file system might need to provide mechanisms such
as digests and encryption.

5) Disk Allocation Techniques: These have not been anal-
ysed in our survey to a large extent as we were not able
to find suitable literature. However, object-based storage
devices do provide some change in this area.

II. DIRECT-ATTACHED STORAGE

The traditional method of having disks that are directly
connected to the server machine (direct-attached storage, or
DAS) has not seen major breakthroughs in almost two decades.
Most of the improvements have been focused towards relia-
bility, using such technologies as replication and journaling
(a concept borrowed from database systems). We examine
another idea for file-systems that has been borrowed from
database systems.

A. Log-Structured File Systems

The challenge in building high performance file systems lies
in using the disk system efficiently. Nowadays large caches go
a long way in absorbing read traffic, and buffers do the same
for write delays. Achieving efficient writes to disk implies
writing data in large, contiguous units. The central idea in log-
structured file systems is that by aggressively caching data and
applying database logging techniques, all disk writes can be
made sequential.

When we consider the operations on small files, most of the
disk I/O seen is for accessing metadata. In many common file
systems, six distinct I/O operations may be required to create
a new file (create an inode for the new file, read the directory
inode, write the data of the new file, update the inode and
block bitmaps). Log structured file systems (LFS) solve this
problem to an extent by reducing the number of I/O operations
corresponding to the metadata for the creation and writes for
small files. The LFS has only one data structure in the disk
apart from the super block – the log. So the LFS writes all
the file system data sequentially in a log-like structure. A log
consists of a series of segments where each segment contains
both data and inode blocks. Traditional file systems like Ext2
[6] usually write inode blocks at a fixed place on the disk,
causing overhead due to disk seeks. A log structured file



system gathers a segment worth of data in memory (which
will be hundreds of KB or MB) and appends the segment
at the end of the log. This dramatically improves the write
performance in the case of small files, while maintaining the
same read performance.

The main challenge while using an LFS is to have large
amounts of contiguous data available at all times. This is usu-
ally handled using a segment cleaner to regenerate large free
extents. If there is available free space, the cleaner coalesces
that free regions to produce clean segments. The cleaner can
run when the disk is idle, so that regular file accesses are not
affected; however during periods of high activity the cleaner
may also be run along with normal file accesses. Depending
on the file access patterns, cleaning can potentially be very
expensive and can degrade system performance. Thus for LFS
the key issue is the cost of cleaning. This, and the general
issue of designing and implementing an LFS may be found
in the seminal work on this topic by M. Rosenblum and J.
Ousterhout [23].

III. TRADITIONAL NETWORK-ATTACHED STORAGE

As the traditional computing model of dumb terminals
connecting to a centralised multi-user server gave way to more
powerful and independent client-side computing, the need was
seen for having a central store that was visible to all these
clients. Network-attached storage (NAS) technologies were
developed and evolved for this purpose. The most common of
these are Sun’s Network File System [24] and the Common
Internet File System [9], which are popularly used in small-
to medium-scale deployments. We first present the general
challenges in NAS file system design, and mention, alongside,
the how NFS and CIFS address these.

A. Locking

Locking can generally be classified in three ways [25].
Exclusive locks allow only a single process to hold a lock,
while shared locks allow multiple processes to simultaneously
lock a file. Record-locking refers to the ability to lock certain
sections of a file. Mandatory locks are enforced by the file
system, while with advisory locks, the choice of cooperation
and honouring of the lock is left to the application

Typically, a user-level daemon is implemented for the NAS
file locking mechanism, since these systems are generally
stateless. A client will request a lock from a server – a daemon
running on a server. It might also maintain a monitor program
to keep a tab on the state of the server. When both of these
processes give a favorable reply, the client assumes that the
file is locked. The server also has a monitor program to check
the status of the client. This is typically done to handle various
scenarios where a server or a client crashes [29].

NFS, implements a Network Lock Manager (NLM) for
locking because it is a stateless protocol. NFS, till version
3, support only advisory locking of files and byte ranges. A
status monitor, called statd, runs on the server as well as
the client for handling crashes of the other. When the NFS

implementation on the client receives a lock request, instead
of the usual NFS RPC, an NLM RPC call is made.

CIFS defines three types of locks – Exclusive locks, Batch
Locks and Level 2 locks. Exclusive locks have already been
described. Batch locks help reduce the network traffic when
multiple open/close operations are done on a file by a single
client – the server keeps the file open, even when the local
access by the client is finished, until no other client requests
for the file access. Level 2 locks are introduced for reading.
Multiple readers may hold the lock simultaneously, but when
a write lock is requested, the server informs all clients, which
then discard read-ahead data, and reread the data from the
server.

B. Buffering and Caching

Typically, each process needing a resource from the server
requires a fetching of attributes/data from the server. If the
data is read/written using block level access on the server,
the caching methodology can be similar to the traditional
direct-attached storage system. On the client side there are
asynchronous threads running which perform the fetching of
the data from the client. These threads often prefetch the data
in a manner analogous to the technique applied in direct-
attached storage.

Caching can be used to for various file system objects [25]:

1) File Attribute Caching: In many situations, only the
attributes in a file are accessed like owner, permission,
etc. The attribute data size is typically small and as it is
accessed frequently, caching metadata greatly improves
performance of the system. As the attributes are stored
on the client itself, multiple requests are absorbed by
the cache and not sent to the server, thus reducing the
network overhead. When the client changes any data it
may immediately be written to the server (write-through
cache), or may be retained for a while before being
committed to disk.

2) Client Data Caching: Clients often do read-ahead and
write-behind to improve overall performance. When the
client receives data it stores it in a buffer cache until it
needs to be evicted or is invalidated by a write to the
same region.

3) Server-Side Caching: In this case caching is done by
the server, making client request processing faster. Also,
multiple requests may access the same data from the
server. In that case, the server can benefit from caching
this data

a) Inode Cache: Contains the file attributes recently
accessed.

b) Directory Name Lookup Cache (DNLC): This
NFS-specific cache holds the information about
recently fetched directories. This makes access to
the file system’s frequently accessed data faster.

c) Buffer Cache: This cache is similar to the file
buffer cache is used in local system for maintaining
file data.



In NFS, for a read operation a RPC call is made on behalf of
the client. The client threads make read prefetch RPC calls.
For write operation, the write is done on the buffer cache and
when this is full, async threads write the data to the server
through the more RPC calls.

In case of NFSv2 [18], the write RPC calls would not return
till the data is written to a stable storage device. However, in
NFSv3 [5], this condition was relaxed and it was the client’s
responsibility to give a commit signal after the entire file
operation was completed. File attributes in the NFS typically
remain in cache for around 60 seconds and they are flushed
out.

Caching in CIFS is mainly dependent on the locks acquired
by the client. In the exclusive lock mode the client can cache
the entire file and flush out the data when it has completed
all the operation. In other CIFS locks, caching is done for the
read operation. The server controls the state of the cache copy
of all clients – this differs from the stateless paradigm used
by NFS and several other NAS protocols.

C. Security and Access Control

We talk about the following aspects of security and access
control

1) Authentication: Verifying the user’s credentials before
permitting access to the system.

2) Authorization/Access Control: Controlling what data can
be accessed by a given user or group of users.

Encryption, which we do not address, can be handled at two
levels, depending on the requirements – encryption of the
transport, and encryption of the stored data itself.

Typically, the NAS server will maintain an Access Control
List (ACL) which verifies the user authorization.

NFS employs an RPC security mechanism (AUTH_SYS
authentication protocol), where each RPC requests contains
the UID and GID to which the client belongs. It may also
use Kerberos-based user authentication [19], which is often
the preferred method.

The NFS protocol works by giving file handles to the
authenticated client. It can be shown that on some untrusted
networks where attackers are present, file handles can be
broken and attackers can directly communicate with the NFS
daemon. In [24], Traeger et al. present a method of using
random file handles to prevent this problem.

CIFS provides share level and user level access control. A
common access password may be set for the file in the former,
where the later uses UID for authentication.

D. Direct Access File System

The technologies seen thus far are relatively mature and
stable. However, with the ongoing trend of huge data re-
quirement for the business environment, these file systems
have limited performance. The Direct Access File System
(DAFS), introduced in [15], proposes a new protocol using
Remote Direct Memory Access (RDMA) and an architecture
to provide high access low latency over Gigabit Ethernet and
InfiniBand networks.

Fig. 1. Overhead of DAFS when compared with traditional approaches

The driving principle behind the design of DAFS was the
fact that current network file systems operate on such inter-
connects as IP-based networks. This introduces performance
bottlenecks due to three reasons. Firstly, every transmission
traverses several protocol layers, each of which introduces
it’s own processing and data overhead. Secondly, as the data
traverses multiple layers, multiple memory copy operations
may be required. Finally, on a slightly different note, DAFS is
a user-space file system. This means that it is, to some degree,
independent of the operating system, and can be modified
without needing to modify the operating system kernel. A
comparison of the overhead of DAFS when compared with
more traditional approaches is shown in figure (1).

In order to avoid the problems caused by traversing multiple
network layers when going over the network, DAFS uses
RDMA [2]. RDMA is a feature implemented on the network
interface card (NIC), or host-bus adaptor (HBA), which allows
safe user-space network access, thus bypassing several kernel
layers during network communication. A study on such copy-
avoidance technologies is presented in [4].

An interesting variant of DAFS is Optimistic DAFS, pro-
posed in [16], which allows the client to access remote
memory pages of the file and VM cache exported by the server.
This kind of setup is useful in a distributed client environment,
and is illustrated in figure (2).

The cache directory may be distributed among servers, and
clients can get handles that refer directly to the server cache.
Clients are not notified at the time of cache invalidations.
Whenever there is a memory access, the remote cache is
checked – if the reference is valid, the corresponding data
is sent, and if it is stale an exception is marked and the data
is transmitted through the normal RPC method.

IV. WIDER-AREA STORAGE

In the last decade, the demand for scalable shared stor-
age has risen dramatically, with the increased use of high-
availability servers, high-performance computing, computing
clusters, and shared storage across installations with upto tens



Fig. 2. Architecture of Optimistic DAFS

of thousands of users. In the mean time, general-purpose
network technology is approaching the speeds of conventional
storage interconnects. These two trends together have heralded
an era of highly scalable storage systems which are able to
use commodity networking components (this trend is further
examined in section IV-F.

We first briefly analyse two storage techniques that are
popular in several scenarios – Distributed and Cluster File
Systems. We then see a newer technology to address the
problem of sharing data across a WAN type environment.
We conclude the section by discussing two promising new
trends/technologies in this area.

A. Cluster File Systems

Cluster file systems provide a distributed, scalable archi-
tecture by replacing the traditional file server by a group of
connected nodes using some interconnect. The group of server
nodes forms a tightly coupled cluster where each node can
share and access the common storage. The elimination of the
single server bottleneck improves performance as the clusters
share the total workload. It also adds to the fault tolerance –
if one of the server nodes fails, another one can cater to its
requests. Data consistency is maintained with the help of a
common metadata server which keeps the information about
the files. This can be replicated for improved availability. Each
node has direct access to the shared data over the network.
The cluster filesystem acts as a software layer that enables the
cluster nodes to share data and work as a single unit.

A typical example of a cluster filesystem is the Lustre File
System [7]. It uses object-based disks (OBDs – these can
be virtual, or actual object-based storage of the type covered
in section IV-E) for storage and metadata servers (MDS) for
storing filesystem metadata. The actual file system I/O and
interface with the storage devices is done by a set of distributed
Object storage targets (OST). Whenever a client want to create
a file, it contacts the metadata server, which creates the inode
and contacts the Object Storage Target to create the objects
that will hold the file. So objects that hold the data and they
can be striped over multiple OSTs. The data is actually read
and written by the OSTs on to the actual storage. The metadata
server is updated only when there are any namespace changes
associated with the new file.

The object storage target links the client request to the
underlying physical storage, represented by the object-based
disk. The OBDs need not limited to actual disks, as the
interaction of the OST with the actual storage device happens
through the device driver. The functionality of the device driver
hides the specific identity of the underlying storage that is
being used. Thus, Lustre can use any of the existing Linux
file systems by providing a OBD driver of that filesystem.
Apart from the storage abstraction this provides, addition of
new OBDs to the OSTs is also made possible without affecting
the nodes.

Lustre provides security by integrating itself with any of
the existing security systems. Depending upon the level of
authentication, authorization and security required, the Lustre
can use specific security systems, without making changes
in the Lustre itself. It uses the Generic Security Service
Application Programming Interface (GSSAPI), an open stan-
dard that provides secure session communications supporting
authentication, data integrity and data confidentiality.

B. Distributed File Systems

Distributed File Systems (DFS) are more loosely coupled
than cluster file systems – each server talks has it’s own
storage, and the DFS presents an aggregated view of all this
storage, while handling matters such as replication across
servers behind this abstraction. In this manner, having a num-
ber of servers instead of a single file server greatly improves
the reliability of the entire system. There may also be more
effective space utilization among the clients, since is often
better to have large space given to the server than all the
clients.

The DFS implementation is typically part of the operating
system. The DFS is a transparent layer and clients are able to
access the files just like they would have done on a local file
system [11].

Caching, as with other file systems, is essential to improving
the performance of a distributed file system. The distributed
nature of the system, however, requires that we tackle the
problem of cache coherence. There are two basic approaches
to this:

1) Client-initiated invalidation: Here, the client checks for
cache consistency with the server at regular intervals.



Fig. 3. The Coda implementation

Checking at shorter intervals allows us to make better
coherence guarantees, but degrades overall performance
due to network bandwidth consumption.

2) Server-initiated invalidation: In this case, the server
maintains the information about the cache state data held
by clients. On update to the data, the server notifies
all the potential clients which have the data, which
then need to invalidate the corresponding entry (the
entry could also be updated, but this does not provide
sufficient performance gain to justify the bandwidth
usage).

We now look at the design of some distributed file systems.
The Andrew File System (AFS) was implemented for dis-
tributed academic environment, with scalability and security
as important concern. For security, the AFS uses Kerberos
mechanism. AFS implements a server-initiated approach for
cache consistency. When a client needs to discover the actual
location of some data, it does so by using the “volume location
server” in the appropriate cell (a group of AFS servers in a
single administrative domain).

The Coda file system [3] is a descendant of AFS. The client
connects to a group server rather than an individual server. The
basic working of Coda is illustrated in figure (3). Coda has a
cache manager, named Venus. The figure shows what happens
during the system call when opening a file. The client makes
the system call, which is handled by the kernel’s Virtual File
System (VFS) layer. The VFS translates the request into the
appropriate file system call in this case the Coda “open” call.
The cache manager then checks it’s cache for file, and if it is
not present makes an RPC request to the Coda servers.

One of the most distinctive feature which differentiates
Coda from AFS is the availability of files to clients without
being connected to the DFS. In the case where clients are
disconnected from the DFS network, Venus does hides the
fact that the actual Coda FS is not available – instead it
maintains a log of all the modifications to the file. Later,
when the client is back into the network, the Venus manager
will replicate the necessary changes on the server in order
to maintain the consistency. Coda allows some application-
specific methods to handle conflicts while committing (they
call it “reintegrating”) these modifications – failing this, a
method for human intervention is provided.

C. Wide-Area File Systems

The techniques described so far do not scale well to WAN-
range networks. Wide-Area File Systems (WAFS) are used
to address this problem. The WAFS solution combines the
distributed file system approach along with aggressive caching
technologies. The WAFS can work with the current NFS/CIFS
server in the organization, minimising the number of infras-
tructure needed during migration. Typically, there exists a file
system redirector between the client and the central sever while
acts as a transparent layer, as is the case in WireFS [12].
Caching of data at remote locations for read/write enables
to have huge performance impact. Co-operative caching, as
described in the WireFS work, reduces the caching bottleneck
at the server.

Typically, a file-aware protocol needs to be used between
the client and the server so that only particular changes are sent
instead of the whole file. The read performance is increased
by the cache, to hide latency. For write buffering, either write-
through or write back approach can be adopted. With the help
of user access privileges, coherence can be guaranteed. For
writing to a file, the write permission has to be sought from the
central sever. This prevents any conflicts between the clients.
Immediately after the update is made, it is reflected at all sites,
so that there isn’t any dirty data on the network.

Commercially available WAFS-based solutions include Tac-
itNetworks’ Tacit Datacenter Ishared Serve (server) with Re-
mote Ishared Appliance (client), Cisco’s Actona Subsidiary,
and Riverhead Technology;s Steelhead appliances.

D. Serverless File Systems

The approaches described so far rely on a central server, or
servers, to cater for the needs of the clients. In contrast to the
this the serverless file systems [1] share the workload among
the various workstations cooperating as peers to provide all file
system services. Each of the peers can have control any of the
data blocks, store it and cache it. If a component fails, the
serverless architecture helps in distributing the responsibilities
of the failed node to it’s peers. The performance measures
for an implementation of serverless file system called xFS
[28], with 32 nodes, showed that each client receives almost
as much read and write throughput as it would see if it were
the only active client.

The basic architecture of the serverless file system is the
sharing of storage, cache and control over the cooperating
workstations. There were three main factors for the develop-
ment of work in this area: the opportunity provided by the
fast switched, the expanding demands of users and the disad-
vantages of a central server system. In the case of serverless
file system, there is no central bottleneck. xFS, for example,
dynamically distributes control processing across the system
on a per-file granularity basis, by utilizing a new serverless
management scheme. It distributes its data by implementing
a software RAID, using log-based network striping similar to
the Zebra file system [10]. Caching at a central server caching
is replaced by cooperative caching, where portions of client
memory form a large global file cache.



The file management scheme is such that the all the file
access details (which change dynamically) are stored in each
of the peers, so that any peer can access any file using the
management scheme. The managers also check the cache
consistency state of each of the peers. For the disk layout xFS
uses a combination of the log structured file system mechanism
introduced in section (II-A), along with the RAID for striping.
The LFS mechanism also helps in crash recovery.

E. Object-Based Storage

A recent introduction in the storage landscape is the concept
of object-based storage devices [17]. The basic idea is to
move the parts of the file system that deal with the actual
storage management, such as block allocation and free block
management, on to the storage device itself. The primary
benefit of this is that if adequate security mechanisms are
provided by the device itself, in conjunction with the typical
NAS-type server, clients can directly talk to the storage
device, reducing some levels of indirection and thus improving
performance. An additional benefit of having a device that
provides richer, more powerful semantics than the primitive
block-based storage is that the file system designer now needs
the only file management aspect of file system design, rather
than messy disk-related details.

1) OBFS: In [27], an implementation of an Object-Based
File System (OBFS) is presented. Here, the object-based stor-
age device (OSD) is used almost as a drop-in replacement for
the typical block-based devices – blocks are mapped directly
to objects. The reason for this is that striping files across
devices is far more efficient, providing better parallel access.
The salient features of their implementation are given below.
They have contrasted their implementation to Ext2/Ext3, and
XFS [26]. We do not include their performance metrics as
these are done with the -o sync option of the mount com-
mand, bypassing the benefits of the Linux kernel’s aggressive
caching. They do this because their first implementation, used
in this paper, is based entirely in user space. There has been
as subsequent in-kernel implementation described in [13], but
this does not include a strong caching framework.

1) Both implementations described above were accom-
plished with about 2000 lines of code. This does not in-
clude the caching framework, but does serve to highlight
the simplicity introduced by having a storage device with
more powerful interfaces.

2) Since the OSD provides a flat namespace for objects,
OBFS uses hash-tables for representing directories, in-
stead of B/B+ trees, which are used in most production
file systems.

3) Since OBFS is expected to be striped across OSDs,
the blocks stored on each device are likely to not have
predictable locality.

4) An important feature of OBFS is the dichotomy of
small and large blocks. OBFS divides the storage into
"regions", some supporting large blocks (512KB), and
some small blocks (4KB). This is done so as to provide

efficient storage for both large and small files, without
losing too much disk space to fragmentation.

We find two significant inferences from the OBFS work.
Firstly, the OSD interface serves to significantly reduce com-
plexity of file system design (or at least the file management
part of it). Secondly, we believe that this direct mapping of
blocks to objects is less effective than mapping the actual
objects used by the file system itself (files, directories, and
attributes). The only benefit OBFS expects to derive is from
parallelism, and we surmise that a cleaner solution is to let
the OSD manage parallelism by sitting at a higher level (an
analogy would be a RAID controller as opposed to a disk
controller). This, we believe, would be truer to the object-
based storage paradigm.

2) Lustre and Object-Based Storage: The Lustre cluster file
system is particularly well suited to use with object-based
storage, since it uses exactly the intended architecture that
OSDs are targeted for – clients first look up metadata on a
metadata server and are then provided a handle (device, object
ID, security permissions etc.) to access the data directly from
the device.

F. Virtualisation Frameworks

The current trend in storage technologies is a move away
from vendor-specific proprietary systems towards systems
consisting of standards-compliant, commodity off-the-shelf
(COTS) components, termed "storage bricks". In this section
we examine the Locus framework presented in [14], which
tries to address the file system design challenges that accom-
pany this trend.

Locus is a low-level framework intended to simplify the
creation of cluster-based storage systems based on the "brick-
based" described above. It follows the popular "shared virtual
disk" model [21], where the upper layers of the file system
view the common storage as a single, large store, and the lower
layers abstract away the details of the underlying storage,
interconnect, fault-tolerance, caching etc. One of Locus’ key
strengths is that it is modular and flexible, allowing part of
the implementation to lie on the application nodes (the file
server, typically) and part of it on the storage device itself.
The flexibility offered by this method allows the system to be
modeled independently of the technology, but adapted to newer
techniques as they are available. This is illustrated in figure (4)
– each module provides it’s own set of expressive semantics,
and a directed-graph of modules is created to implement the
required system.

For example, consider block allocation, which has tradi-
tionally been a part of the file system itself. In the Locus
framework, this is yet another module, which can reside on
the server node, as it would in a traditional file system, or on
an object-based storage device, which has the block-allocation
intelligence built into it. Note how this flexibility extends itself
neatly to hardware or software RAID, encryption, and volume-
management, to name but a few oft-used features. Another
important simplification introduced by Locus is the in-band
handling of locking. Unlike other systems which have out of



Fig. 4. Example architecture – the Locus framework

band lock management (for example, NLM for NFS which we
have seen), locking is implemented in the block layer as yet
another module by Locus.

We briefly describe Locus’ locking mechanisms in or-
der to provide a flavour of the power of having stackable,
semantically-rich modules.

1) Locking in Locus: Locus provides byte- and file-level
locking mechanisms. The byte-level sharing module maintains
metadata which is basically list of unlocked regions. In order
to ensure mutual exclusion to locked regions, a single instance
of the locking module services locking of a particular byte
ranges. Several instances of the module, each with a separate
byte range to service, can be used to balance the load. A useful
optimisation, particularly on object-based storage devices, is to
map these locking modules onto locking mechanisms provided
by the OSD.

In order to leverage the power of the framework, the authors
of the Locus paper wrote a user-space file system – Locus-
fs – to provide locking primitives. This merely translates
the file-level calls to block-level calls, leveraging the locking
mechanisms provided by block-level layers. In fact, the block
allocator layers also use the same mechanisms to ensure
metadata consistency.

The modular design of the Locus system is bound to
introduce some overhead of communication between layers.
The Locus paper observes a significant difference (~20 mi-
croseconds vs. ~300 microseconds) in overhead due to calls
over the network on a Gigabit Ethernet backbone. This might
be alleviated by faster interconnects, but is still a bottleneck.
The system shows good scalability as well, tracing the number
of nodes closely. However, these experiments were performed
on a relatively small system (maximum of 8 server nodes and
8 storage nodes). The interesting point to understand here is
there is a trade-off between the simplicity and scalability of
such a system and the overhead introduced. We were not able
to find any existing work on this subject, possibly because the
methodology is relatively new.

V. WORKLOAD-BASED ANALYSIS

Through this paper, we have tracked the development of
storage systems and the corresponding changes in file system
design. We now take a brief look at the possible impacts of
some workloads on the both of these.

One of the challenges of analysing workloads and their
impact on storage and file systems is that these systems,
while designed in a generic framework, are deployed in
various, significantly different scenarios, each with disparate
requirements. For example, a web server often accesses a set of
small files repeatedly and infrequently performs writes, while a
database server might have diverse access patterns, depending
on the types of queries, and caching strategy of the server
software.

We summarise the findings of the study by Roselli, et al
[22]. Their work primarily focuses on a university environment
with several users accessing a NAS-based storage server. They
inserted kernel hooks to get traces of file accesses from
Unix- and Windows NT-based systems over some months.
The data collected is representative of several typical scenarios
of deployment. The findings are largely independent of the
underlying technology.

1) stat(): The percentage of stat() calls, of all file
system calls in these workloads was around 97%. In
addition to this, stat() is often invoked on several
files in the same directory in a short span of time. It
would thus benefit performance if the file system kept
files’ metadata structures close to the directory and each
other. The NFS READDIR2 call provides exactly is
optimisation.

2) Block lifetimes: The patterns in block lifetimes are inter-
esting. The traditional rule of thumb for block lifetimes
is that blocks tend to be deleted within the first 30
seconds of their creation, or a long time after that.
The Roselli study shows that under some loads this is
closet to 5 minutes, while in others there is no such
pattern at all. The key observation, however, is that a
large number blocks are deleted due to overwriting of
the corresponding file – 51% in the lowest workload,
but 86-97% in the others. Moreover, a small number of
files, less than 5% of all files involved, caused all block
overwrites 1. The implications of these findings are listed
below.

a) The rule-of-thumb block lifetime of 30 seconds
might not be valid in such scenarios.

b) Caches that can buffer writes for a long time
would be useful in performance enhancement. For
reliability, the use of NVRAM, reliable memory,
or logs is suggested [8].

3) Write delays: It is necessary to examine the effects of the
write delay introduced by buffering. The first concern is
calls such as sync() and fsync(). Using methods

1Our conjecture is that this is due to the fact that typical POSIX-style
file semantics do not allow insertion of data in the middle of a file. Most
applications work around this by overwriting the file with an updated copy.



such as NVRAM, we can maintain the system-call
semantics without actually flushing to disk. Secondly,
the Roselli group has shown that a 4-16MB write buffer
provides a sufficient approximation of an infinite buffer.
This may not be applicable in several scenarios today
(6 years after their study was published), but the key
observation is that the required buffer is reasonably
bounded, and the argument is aided by falling memory
costs.

4) mmap(): A major trend in modern application is the
replacement of traditional file read() and write()
calls with the mmap() method, which maps the entire
file into the process’ address space. In fact, about 68-
85% of all files that were accessed were accessed by this
method. Unfortunately, the Roselli study was not able to
capture access-patterns when files were accessed in this
way. This information might provide some interesting
insights.

5) File sizes: Traditionally, it has been seen that most file
accesses involve small files, and few big files. This
trend is generally still prevalent (the study saw 63-
88% of access to files less than 16KB in size), but
in accordance with today’s applications, the number of
large files accessed is increasing. File systems today
strike a balance by being able to access blocks of small
files using direct pointers in their on-disk structures
(usually inodes), but using extent-based allocation to
allow efficient access to large files as well.

VI. FUTURE WORK AND CONCLUSIONS

The primary observation of this survey is that network-
based storage has been, and currently is, the foremost driver
of changes in file system technology. Another interesting
trend to note is the movement, at least in research circles,
from kernel-based file system implementations towards user-
space implementations. The simplicity, reliability, and, most
importantly, ease-of-use are probably the driving forces here.

Object-based storage techniques represent a paradigm shift
in storage methodology – it will be interesting to see the di-
rection these devices take in the future. Additionally, although
current file systems often try to use caching enhancements
to improve the performance as the ultimate bottleneck are the
disk speeds, but the efficacy of this depends on usage patterns.

Currently, there is no implementation of self-adaptive
filesystem for workloads that we know of. Future research
work in this direction may be interesting. Workload-based
analysis could provide several insights in this respect, in
addition to shedding light on common usage patterns and
how they deviate from the assumptions made by file system
designers.

REFERENCES

[1] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David Patterson,
Drew Roselli, and Randolph Wang. Serverless network file systems. In
In Proceedings of the 15th Symposium on Operating System Principles.
ACM, pages 109–126, Copper Mountain Resort, Colorado, December
1995.

[2] S. Bailey and T. Talpey. The Architecture of Direct Data Placement
(DDP) and Remote Direct Memory Access (RDMA) on Internet Proto-
cols. RFC 4296 (Informational), December 2005.

[3] Peter J. Braam. The coda distributed file system. Linux J., 1998(50es):6,
1998.

[4] Jose Carlos Brustoloni. Interoperation of copy avoidance in network
and file i/o. In INFOCOM (2), pages 534–542, 1999.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol
Specification. RFC 1813 (Informational), June 1995.

[6] R. Card, T. T’so, and S. Tweedie. Design and implementation of
the second extended filesystem. In Proceedings of the First Dutch
International Symposium on Linux, 1994.

[7] Lustre: A scalable, high-performance file system. Cluster
File Systems Inc. white paper, version 1.0, November 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[8] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher
Aycock, Gurushankar Rajamani, and David Lowell. The rio file cache:
Surviving operating system crashes. In Architectural Support for
Programming Languages and Operating Systems, pages 74–83, 1996.

[9] SNIA CIFS Technical Work Group.
[10] John H. Hartman and John K. Ousterhout. The Zebra striped network

file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors,
High Performance Mass Storage and Parallel I/O: Technologies and
Applications, pages 309–329. IEEE Computer Society Press and Wiley,
New York, NY, 2001.

[11] Eliezer Levy and Abraham Silberschatz. Distributed file systems:
concepts and examples. ACM Comput. Surv., 22(4):321–374, 1990.

[12] J. Liang, A. Bohra, H. Zhang, S. Ganguly, and R. Izmailov.
[13] C. Lin. Build object-based filesystem into linux, 2002.
[14] R. Lachaize M. Flouris and A. Bilas. Shared and flexible block i/o for

cluster-based storage, 2006.
[15] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, A. Gallatin,

R. Kisley, R. Wickremesinghe, and E. Gabber. Structure and perfor-
mance of the direct access file system, 2001.

[16] Kostas Magoutis. The optimistic direct access file system: Design and
network interface support.

[17] M. Mesnier, G. Ganger, and E. Riedel. Object-based storage, 2003.
[18] Sun Microsystems. NFS: Network File System Protocol specification.

RFC 1094 (Informational), March 1989.
[19] B. Clifford Neuman and Theodore Ts’o. Kerberos: An Authentication

Service for Computer Networks. IEEE Communications Magazine,
32(9):33–38, September 1994.

[20] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for
redundant arrays of inexpensive disks (raid). SIGMOD Rec., 17(3):109–
116, 1988.

[21] Edward W. Felten Robert A. Shillner. Simplifying distributed file
systems using a shared logical disk. Technical Report TR-524-96,
Princeton University CS Department, 1996.

[22] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison
of file system workloads. pages 41–54.

[23] Mendel Rosenblum and John K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems, 10(1):26–52, 1992.

[24] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob
Lyon. Design and implementation of the Sun Network Filesystem. In
Proc. Summer 1985 USENIX Conf., pages 119–130, Portland OR (USA),
1985.

[25] Hal Stern. Managing NFS and NIS. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2001.

[26] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck. Scalability in the XFS file system. In Proceedings of the
USENIX 1996 Technical Conference, pages 1–14, San Diego, CA, USA,
22–26 1996.

[27] F. Wang, S. Brandt, E. Miller, and D. Long. Obfs: A file system for
object-based storage devices, 2003.

[28] Randolph Y. Wang and Thomas E. Anderson. xFS: A wide area mass
storage file system. In Workshop on Workstation Operating Systems,
pages 71–78, 1993.

[29] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building
Internet firewalls (2nd ed.). O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2000.


