

The Reiser4 File System

An introduction to the path-
breaking new file system, and

some insights into the underlying
philosophy.

Reiser4

New FS for Linux
• Open source

Currently in beta
Merged into kernel soon
Started by Hans Reiser of Namesys
Very fast
New innovations

Files

Files
• User - A collection of related data

• Application abstracts actual storage at most times
• Management is primitive

• Developer – A contiguous byte-stream
• Random access, but…
• Can't add to middle
• Can only delete from end

• File system
• Not necessarily contiguous
• Divided into blocks

• Small files are expensive
• 1 block per file, irrespective of file size
• Tails

Directories

Directories allow the user to impose a
hierarchy to storage
• Convenient
• Invaluable if number of files is large
• Simpler to implement than more generic interfaces

Actual implementation
• Linear arrangements are inefficient to search
• Trees make sorting faster
• B-Trees make access faster

• More fanout, less depth
• Price is complexity - justified by performance gain

B+ Trees
Like B-Trees, but data only at leaves
Improves caching prospects

Dancing Trees

XFS (by SGI) is very aggressive in
caching
Reiser4 is too
The tree is updated on flush to disk only
What does this mean
• Repacking the tree repeatedly is intensive

• Do it at the last moment, before the flush

Tail Packing

Tails waste space
Reiser4 packs them into a single block
• The tree structure allows this

Saves about 5% disk space
• Reiser4 has 94% storage efficiency

Repacking is expensive
• Tail must be removed on append to file

• Rest must be repacked

Journaling 101

Traditionally
• Consider a power cut / server crash

• Must reboot, FS is unclean (inconsistent)

• Scan the disk, make sure all on-disk
structures are valid

• Time consuming

• 500 GB server – 3 hours!

More Journaling

Journaling was first used in DBMSes
Make all “transactions” (disk updates) atomic
• Keep a log (journal) of all pending transactions

• Only remove from journal after completion

• An operation either occurs completely or doesn’t at
all (atomic)

• No chance of inconsistency

Crash? No problem!
• On restart, replay the journal

Wandering Logs

Data journaling expensive
• Only metadata is done

Reiser4 introduces data journaling at
reduced cost
• Don’t modify data in-place, modify disk data

structures

• Some updates are better in-place – be
intelligent about it

• Experimental

Layering

Semantic Layer
• Interfaces to user, developer

• Rich in expressive power

Storage Layer
• Limited interfaces

• Tuned for speed

Plugins

Plugins are the key to Reiser4’s power
Extendible interfaces mean flexibility
• Not tied down to one set of interfaces or semantics

any more
• Addition of features like ACLs is a breeze

• Changing user view of the FS is easy

Increased modularity
Every file has a plugin-id
• This is an offset into an array of plugin functions

Plugin Types

File plugins
Directory plugins
Hash plugins (directory -> file mapping)
Security plugins
Item plugins (balancing of the tree)
Key assignment plugins (for per file key)
Node search and Item search plugins
(For different kinds of nodes and items)

Software Engineering Miscellany

Break complex primitives into simpler ones
• Keeping only simple primitives maximises expressive

power

• Can everything be done with files and directories
alone?

Unify namespaces
• Too many different types of objects means every

object needs to know how to talk to other objects

• Example, if attributes can be made files, don’t make
a whole new object type for them

Putting it all together:
/etc/passwd

Simple text file with ‘:’ delimited fields
• Stores user name, id, password, shell etc…

Only root can modify it
Very coarse grained
User can’t change own shell
Password is set by a privileged program

A better /etc/passwd

Make a plugin to give a simpler interface
• /etc/passwd/joe/shell accesses the shell field

• “passwd” is still a file, but looks like a
directory

• Use finer grained security for the “files” that
are actually fields

Alternatively, make passwd a directory,
and let the plugin aggregate the contents

Other examples

Small files are efficient in Reiser4
Adding security attributes is simple
• ACLs are one example

Just make the attribute a file, internally
• It’s small, but that’s okay

• File is hidden to all higher layers

• The plugin handles all access to the attribute

Conclusion

Reiser4 and later are definitely worth
keeping an eye on for
• Speed

• Features

WinFS is treading a similar path as well

References

www.namesys.com
• Documentation for Reiser4

• Hans Reiser’s extensive Future Vision
whitepaper

B-Trees can be looked up in any book on
advanced data structures

http://www.namesys.com/

The End

Thank you for coming!

